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ABSTRACT

These studies, based or. classical electrodynamics, present
numerical values of the Fresnel intensity reflection coefficients ir
tables and graphs. The reflection coefficients are given for
normal and )blique incidence for approximately 2500 i'adices of
refraction N = n - ki, i.e., n = 0. 1 (0. 1) 4.0, k = 0 (0. 1) 6.0, for
angles of incidence Go = 00 150) 850. A set of graphs illustrate the
solutions of the Fresnel equations. The supplementary remarkc.
describe in detail the occurrence of reflection characteristics zuch
as the angle of incidence 90 for which a) the amplitude of the wave
oscillating parallel to the plane of incidence is a minimum, b) the
degree of polarization is a maximum, and c) the two amplitudes of
the reflected wave have a difference in phase of 6 = 900. Tables
and graphs illustrating these three special circumstances are
provided. Some examples of the determination of the index of
refraction from reflection measurements are also given.
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PREFACE

Several new areas of research are reviving interest in the
classical physical principles of electromagnetic wave propagation
and wave intez action on materials. It is now certain thaf laser light
will become an important tool in target determination and discrimi-
nation. The determination of reflection parameters is being used to
investigate and predict the behavior of reflecting materials and sur-
rounding media. A general tabulation of the numerical values of
wave reflections would be useful in such studies and would greatly
reduce duplication of research effort. To the writer's knowledge,
these data are not available in reference form. Nearly all elemen-
tary physics textbooks contain graphs to demonstrate the variations
in the reflectivity of glass, plotted against the angle of incidence;
other examples of electromagnetic radiation reflections appear else-
where in the literature but are not compiled in useable form; a great
majority of the handbooks give the reflectivity for normal incidence
only.

The tables which comprise Volume II are designed to partially
fill this r-ed, and the accompanying explanatory material provides
a very sin le method for extending the tables as required. The
compilatio -. of these data began during a study of the effects of solar
radiation p,'essure on satellites (Ref. 1); the numerous reflection
coefficient '•.lues required were tabulated for internal use. For this
report, the tables have been completed and expanded to present the
numerical values for the index of refraction N = n - ki for all com-
binations of n = 0.1 (0. 1) 4.0, k = 0.0 (0. 1) 6.0, and the angle of
incidence 0 -- 00 (50) 850. The selected ranges of indices of refrac-
tion and angles of incidence cover a whole region in sufficient density
to permit interpolation.

Chapter 1 briefly discusses the basic principles of electro-
magnetic wave propagation and reflection, and contains the reflection
formulas which were applied in preparing the tables.

For the purposes of this paper, the relative index of refraction
is considered as a fundamental constant defined by the complex

- number N = n - ki. This notation is commonly used in optics and,
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in the case of reflection, the constant k is a positive number and N is
independent of the angle of incidence of radiation. The macroscopic
approach to the electromagnetic theory defines the index of refraction
as dependent on the material constants a, e, and 1i (specific con-
ductivity, dielectric constant or permittivity, and magnetic perme-
ability, respectively), as well as the wavelength X. In the visible
and infrared region of the spectrum the material constants n and K,
which appear in the refraction index N = n - ki = n (1 - ni), are
restricted to a phenomenological description of the material qualities.
The quanturr theory and the dispersion theory have to be employed in
order to derive equations for n and k which take into account the
atomic structure.

Chapter 1 provides some details about the derivation of the index
of refraction by physical constants. By virtue of the definition of the
complex index of refraction N = n - ki, the set of complex numbers
for N is located in the fourth quadrant of the plot of the complex num-
bers as long as the index of refraction of matter is considered with
respect to vacuum or air. The case of thin layers will be excluded;
therefore, the index of refraction is a parameter for the bulk material
considered and does not depend on its thickness. For the plot of com-
plex numbers, the names "Gaussian plane of complex numbers" and
"Argand diagram" are both in usage.

Given the definition N = n - ki, the conjugate complex values of
N (N = n + ki), which are located in the first quadrant of the complex
plane of numbers, possess a distinct physical meaning. If an electro-
n.agnetic -w-tve passes through the interface between two materials
with conducting or absorbing qualities, defined by the relative indices
of refraction with respect to vacuum or air [i. e., N, = n1 - k1 i and
N2 = n 2 - k 2 i (k, Z 0, k 2 t 0.)], the relative index of refraction

N1 2 - N 2 /N can take on one of the two forms N12 = n1 , + k1 2 i or
N1 2 = n1 , - kl 2i, where the coefficient k12 is required to be non-
negative. Which of the two forms of N1 2 we get depends on the
numerical values of the coordinates of the two refraction indices. As
long as we consider only isotropic dielectric and absorbing materials,
the relative index of refraction will be represented only in the first
or fourth quadrant of the Argand diagram and the reflectivity R. will
be in the interval 0 : RV : 1. Since the numerical values obtained
by the Fresnel formula are the same for each pair of conjugate com-
plex values of N, the illustrations in the complex plane are given
only for one quadrant of the plane. The physical interpretation of
the second and third quadrants, where the real refraction index n
becomes negative, is beyond the scope of this study. For one pair
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of the terms N = -n - ki(n - 0, k 0) 0, the numerical values for the
reflectance obtained from Fresnel equations are the reciprocal of the
reflectance we receive for the same pair of the form N = n - ki

(n • 0, k - 0). The numerical results of R are then in the interval

1 :g < :5

The tables of numerical values, which accomplish the main
objective of this report, comprise the appendix which is published
separately as Volume II for convenience in use. Table A, the princi-
pal exhibit, cont tins the reflection intensity coefficients of electro-
magnetic waves oscillating perpendicular and parallel to the plane of
incidence for all combinations of n = 0. 1 (0. 1) 4. 0, k = 0. 0 (0. 1) 6.0,
and angles of incidence 00= 50 (50) 850. Tables B, C, and D are for
special cases, such as normal incidence (60 = 00) or real indices of
refraction, and are added to provide complete coverage. Numerical
values for those cases in which R 2 and R 2 /R 1 are a minimum are
presented in Tables E and F; Table G contains numerical values with
respect to the "principal angle of incidence, " which is the angle of
incidence at which the difference in phase between the two amplitudes
of the reflected wave becomes 900. The corresponding values of the
reflectance are also given. The reflection coefficients and the other
numerical values for the second decimal of the index of refraction
can easily be interpolated from the tables. For many of the cases
occurring outside the above-mentioned intervals, simplified equations
of the reflection coefficients may suffice. An extension of the graphs
(Chapter 2) will be helpful in arriving at a preliminary estimate.

Chapter 2 is composed entirely of graphic illustrations of the
numerical reflectance values. Some of the graphs illustrate reflect-
ances R1 and R. as a function of the angle of incidence for selected
indices of refraction. Other plots do the same for the unpolarized
radiation R. In certain cases the Argand diagram vas chosen for the
complex index of refraction. One set of graphs illustrates the re-
flectances R 1 , R 2 ., and R = 1/2 (R1 + R2 ), and another deals with the
degree of polarization P = (RI - R2)/(RI + R 2 ). There is a separate
diagram for each constant value of the angle of incidence 00 = 00 (100)
700 (50) 850.

The remarks in Chapter 3, together with the graphs in Chapter 2,
will aid in understanding the numerical solution of the very complicated
Fresnel formulas in the whole plane of the index of refraction. One of
the more interesting aspects covered in Chapter 3 is the occurrence
of the characteristic reflection angles.
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Chapter 4 suggests possible applications of the material presented
in this report, and describes various methods of determining the index
of refraction from reflection measurements.

It has recently come to the author's attention that a part of his
findings, which were based on the numerical data obtained for this
paper, had been published earlier by other authors. These publications
are cited as Ref. 12 and 15 - 22.

All the numerical computations were performed on standard IBM
machines an I were sponsored by the George C. Marshall Space Flight
Center (MSFC), Huntsville, Alabama. The author is very grateful to
Dr. Hans J. Sperling of the MSFC Aeroballistics Division, for his
assistance in the preparation of a major portion of the tables.
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GLOSSARY OF SYMBOLS

The syrn -ols used in this paper are those in general
use in physics, and each symbol is fully explained when it
first appears in the text. For convenience, the most
frequently used abbreviations and symbols are defined
below:

N = n - ki complex index of refraction

go angle of incidence

rV amplitude reflection coefficient

RV intensity reflection coefficient

R, = R1 reflection coefficient - electric
vector perpendicular to the
plane of incidence

R? = R11 reflection coefficient - electric
vector parallel to the plane of
incidence

R = '/a (RI + R..) reflection coefficient of unpolar-
ized radiation (natural light)

P = (R1 - RZ)/(RI + RZ) degree of polarization

xii



Chapter I

BASIC PRINCIPLES AND MATHEMATICAL SOLUTION
OF THE PROBLEM

In an isotropic homogeneous medium, which contains no electrical
charges, Maxwell's equations are valid to describe the electric field
vector E and the magnetic field vector H for all kinds of electric and
magnetic events (Refs. 2, 3, and 4). After the application of certain
vector operations, MaxwIl's fundamental equations lead to the wave
equation which, by use of the m. k. s. system of units, becomes

where

V2 = Laplacian vector operator

e, l= = inductive capacities -- dielectric constant and
permeability, respectively

a = conductivity.

If the field is monochromatic and of angular frequency W, we have
)/at -=--iW, and Eq. (1) can be written

VzE + kvE = o, (2)

which is satisfied if

kuz = 1100A - tpauWi. (3)

The last equation is fundamental for all our considerations. The term
kv, which represents the intrinsic propagation coefficient for the
medium (also called propagation constant, complex wave number, or
separation constant), is of the dimension [cm-1 ] and is determined by
the material parameters of the medium through which the wave is
propagating. The same wave equation is valid for the magnetic field

vector H, and the solutions of Eq. (1) have the general form
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FV = Foe i(kv - Y - Wt) (4)

where Fu denotes any field component of the wave traveling in the
medium denoted by the subscript v, ju is the unit vector in the
direction of propagation, and F denotes the position vector drawn
from a chosen origin. As long as kv is constant, propagation will
be undisturbed and the energy flow will suffer loss only by absorption.
These transverse oscillations, described by Eq. (4), may be assumed
to consist of two equal components which are plane-polarized in
mutually perpendicular , zimuths and are in phase with each other.

The case in which kv varies indicates that the wave enters a
second medium with material parameter 3 different from the first. The
field motion of charges in the second medium and the reaction which
occurs in the first medium create the reflected wave. In the
mathematical treatment of the boundary value problems, we assume a
very thin interface located in the common boundary between the two
media. The boundary conditions have to be fulfilled, which means that
for the first derivative the field vectors have to be continuous across
the interface.

We consider the first medium always as vacuum or air. As
xplained above, if the second medium is a dielectric there will be a

". "'ected wave and a diffracted wave. The direction of propagation of
.e diffracted wave is given by Snell' s law

sin 00 k,

where the subscript o stands for the first medium and the subscript I
for the diffracting medium. The angle 0o is called the incident angle,
the angle 01 is the refraction angle, and the ratio of the propagation
constants is the index of refraction.

If the second medium is an electrical conductor, the refracted
wave penetrates only thin boundary layers and we have the effect of
absorption in addition to the reflection. The propagation constant for
the refracting medium becomes complex and the refraction angle 81
has to be replaced by a pair of complex angles since the incident angle
is always real. In order to distinguish between the incident and refracted
waves, which are both traveling in the same medium, the parameters of



the reflected wave are denoted by the subscript 2. Using Eq. (3),
we write the propagation constant for the two media

kj? =klZ - pC171Wi k?' = kzW'
(6)

k, = • - 0, i kz = V1

Snell's law has only a formal meaning but is still effective, and Eq. (5)
for an electrical conductor becomes

sin 6
0 0o _ (7)sin ((P + Xi) az 7z

or

sin( S +x N = N n- ki n(l - Ki) (8)
sin (cp + xi)

where n and k are the real and imaginary parts, respectively, of the
index of refraction.

While the real indices of refraction of the dielectrics (transparent)
vary only slightly with the wavelength, the complex indices for the con-
ductors show marked dependence on wavelength. Two graphs are
provided to depict this variation of the complex index of refraction with
wavelength using values taken from Refs. 5 and 6. Figure 1 employs
the Argand diagram to show the index of refraction N = n - ki for a
number of metallic elements.

The axis of abscissa demonstrates the real part of the refractive
index, and the axis of ordinate depicts the imaginary part. Each curve
represents a different metal and shows how its index N changes with
the wavelength. The three-place values at the beginning and end of the
curves give the wavelength in mik (= 10- cm). In order to not over-
crowd the graph, examples of only a few elements are shown. The
curves were not smoothed because the values plotted are from various
authors and therefore were not obtained under the same test conditions,
such as surface treatments of the material considered. The surface
structure is very important and has an effect on the numerical values of
N for the bulk material. The second graph (Fig. 2) presents N for the
wavelength of the sodium line D, X = 5893 R, and that of a ruby laser
beam.
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Maxwell's theory cannot describe the shortwave (optical) region
because it assumes that the media are homogeneous, that is, that the
dielectric constant e and the ,Iectrical charge density p, are
parameters which do not change with space and time. It was necessary
to apply the dispersion theory, an extension of Maxwell's theory, in
order to take into account the atomic structure of the media. The
dispersion theory leads to expressions for the constants n and K which
are in good agreement with the experimental results. The relationship
between the optical and electrical constants (Maxwell's relation iV = n)
is of limited validity, and for the shortwave region there exists no
direct connection between the index of refraction at optical frequencies
and the static or quasi-static values of the electrical material constants
(e, p, and a). (This relationship is more fully described in releva'it
textbooks.) It follows that

ni-_1_sLoaz

k.!A. (9)

However, the methods for determining the index of refraction in the
optical region and that in the microwave and longwave region are very
different. In optics, the index of refraction for dielectrics can be
measured by means of Snell's law [Eq. (5)], whereas the definition for
the conductors k or x can be detern;&ned by measuring experimentally
the light intensity I which is transmitted through thin films of opaque
materials. The following formulas, known as Lambert's law, are
found to hold true (Gaussian unit system):

I = Ioe4Kd/1

= Io e'-4"kd/'° (1 0)

with

6o k



where

Io = incident intensity

I = transmitted intensity

x = extinction or absorption index

k = extinction or absorption coefficient

)o = wavelength in vacuum

%I = wavelength it side the medium

d = thickness of the medium

These equations follow from Eq. (4) for t = 0, and will have the factor

2 instead of 4 in the exponent if the amplitudes are considered.

In the longwave region, the static measurements of material

parameters lead to the determination of the propagation constants, and

if the matter has conducting properties the equations for the propaga-

tion constants are

6(+- --

where v is the frequency of the wave considered and

W = ZfTV.

The index of refraction thus becomes

N n -k _ = !Li (13)

-a 1 o (15)

7



If the magnetic permeability and the specific inductive capacity are
unity, written

XrC = e

Xc =

then Eq. (14) and (15) become

n? + 01 i + 16)

k-2= 1/2. 01 +el. - 1 (17)

If the refracting medium is a plasma (ionized gas), the specific
inductive capacity of the matter will not be unity, and Eqs. (14) and
(15) become (Ref. 7)

n' r aI / + a7 " + tr (18,

? 1/4v / 7+.ac g] (19)

The constants of the medium, Cr and aac, can be calculated by

NezOrdc = m"- (7-0)

Nez V = Iw '

7ac : + ± (21)

V = n~e(,--i.. (22)

8 1 1 N (23)

8



1 ac - N ec+1 T71 (24)-V-- go o 3;1 UO+• VZ +

W rN' - (Z5)

where

adc = direct current conductivity

aac = alternating current conductivity

N = electron number density

e = electron charge

m = electron mass

V = electron collision frequency

w = angular frequency of the electric field applied

n = number density of molecules or atoms

Se = collision cross-section area

k = Boltzmann constant

T = temperature

Wc = plasma frequency

Using Eqs. (20) to (25), the Eqs. (14) and (15) become

n 1/ / ( (26)

+ "•'U} \(W + V2)1 "(T
ka=/WVC V O(1 c~) (27)

9



The relation among the incident, refracted, and reflected amplitudes of
the wave can be determined from the boundary conditions. In the case
of reflection, the amplitudes of the electromagnetic field vectors E
become

Er E i r e-i61
E(zr)

(i -i68)

E= l r e11

where rj. and rll are the Fresnel reflection coefficients. The exponents
61 and 811 account for the phase difference between the incoming and
reflected waves and will be discussed later. Here we are considering
only reflection, and have to distinguish between the ratios of the
amplitudes and of the intensities, which are given in teims of the
numerical value of the incident wave. Note that the Fresnel amplitude
reflect- n coefficients are

El sin(eo - 01)
r E-. sin(rB° + )

(29)
Ell tan(Oo . 1)

I tan(e° T G1)

Using Snell's law, the Fresnel intensity reflection formulas can then be
derived as (Ref. 4)

i- • - cos 8 4021 Z(.) (30)

(±s. .• + cos eo0 +Q~) \ (.1
_ . qo ++ 1

. cos o + I +1 C .+ -cos Oo +

10



where p and q are functions of Go, lt, and . In this report, only

the case where Km I _ *l will be considered; included will be all

types of materials with the exception of the ferromagnetics among the
electrical conductors. For the sake of convenience, we will generally
use the following abbreviations in the remainder of this report:

R?=R1

r - /2 (RI + R?)

and corresponding expressions for E, r, and 6. The term R also
represents the intensity reflection coefficient of unpolari2,ed radiation
such as natural light.

3ased on the assumption that p? = •I, Eq. (31) was reduced to a
more proper form by Pfeiffer (see Ref. 2, pp. 241 and 24Z).
Following his equation, the Fresnel intensity reflection formula can be
rendered as

q _ Cos 0o +

R, = )(32)

RZ = .) 2 - )- (33)

S)cos )o'

+ cos Go + (z 3- + sin eo tan eo +
* (~.+cos~o) 2 +(. )z ( ++inot ~) 2 +~)

For the calculation of the quantities q and p the following two equations
can be used: (~ ~/ P(of2, (.z)+0) + sin? 00

+A +.R011 z 0. (34)

+ C4l



/2Szsin? 8o
Ot-z - irZ2

+ (a-)2 (L' )2 +[( (1)Z sino] (35)

A corresponding set of reflection formulas occasionally used (Ref. 3,
p. 1594) are

RI sinZ (G0 - (P) + sinhZ X (36)
sin? ( 00 + 4) + sinhZ X

R? = sin? (Oo -)) + sinhZ X cos' (o +4) + sinh2 x (37)
sin2 (Oo + 4)) + sinh2 X cosZ (0o - 41 + sinh2 X

Equations (38) to (41) given below will be used to determine the angles

p and X, which were previously introduced by Eqs. (7) and (8):

sznhZ X ( - + 138)

b
coo bp=snh"- (39)

b x± sin 0o ksin 0o
al + Kai nZ + k0

sin eo - sin Go

7•+I . ± (40)*

c~-sin3 Bo sin2 Bn
c~l=1...2.

i O° +-sin'

=1 1 (41)
S- i z no z ooz

0512 /00 02 5

SThe plus sign should be used in Eq. (40) if N z n - ki is used, and the

minus sign if N = n+ ki (n>0, k >0) is used.

12



It naturally follows that the rigorous Eqs. (3Z), (33), (36), and (37) can
be converted into the familiar Fresnel equations for dielectrics if the
index of refraction is real. They then become

R sinz (eo - el) (4Z)
sinz (80 + e1)

tanz (Go - 01) (43)
= tanz (e0 + el) (

At normal incidence (8 = 0°), the intensity reflection formulas are

Index of Refraction - Complex

R =R = R = (n- ) (44)
(n + )2+4

Index of Refraction - Real

R = R, = RS = )Z (45)

Using Eq. (28), the phase difference 6 between the two reflected
waves is expressed by

r11 e-i(611 - 8.) R /•7 -i8
I = e . (46)

The relation of the phase difference to the difference between the
optical paths traversed by the two waves is expressed by

phase difference L (•)(optical path difference).

Since Km 1, the phase shift 6 is determined by

t POO =sin Go tan 6o

tan 6 = - &Z (7
p(6o)2  (4o)

sin2 0o tanz Go - e +

13



If 8 = 900, then Eq. (47) becomes

sin2 0 o tan? 00 = q(Bo)2 + q(O°)--(-8),
a( 

4 8

and if we substitute n and k, this reduces to

(nZ - sinz 80)? + (k2 + sin? 80)2 + Znzkz

= sin4 go (tan4 0o + 1). (49)

The incidence angle 0o at which the phase delay 6 = 900 occurs, called
"the principal angle of incidence, " is of great importance in optics and
will be discussed more fully in Chapter 3.

The ratio-- defines the polarization of the wave, and the degreer I

of polarization P is expressed by the ratio of the excess to the sum of

the two reflected intensities, which is

p= R, - R2 = Y__ (50)R, + R? + +- 2

As long as we consider specular reflection only, the degree of
polarization will always be positive and will fall between zero and unity.
As was mentioned earlier, the direction of the refracted radiation
in absorbing media cannot be calculated by Snell's law. The refracted
wave will have only a very small penetration depth and will travel in
a direction given by an angle V, measured from the internal normal of

the surface. For this angle, the equation

sin 8o n 0_n(8o (51,)

sin V'

is valid and gives a real index of refraction which is a function of the
angle of incidence. By application of Kettler's equations (Refs. 2, 3,
and 4), this index becomes

n (Go) - q(8) + sina 00 (52)
(52

J4
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Chapter 3

SUPPLEMENTARY REMARKS AND REVIEW OF THE
* NUMERICAL VALUES

The numerical values which are given in Tables A through D are
the power intensities of the reflected radiation that are the absolute
squares of the amplitudes. If the numerical values of the amplitudes
are wanted, one must take into consideration that r, = r.. is alw.sys
negative and that ra a r,, is negative if the angle of incidence 96, is
larger than that for which the minimum of RA occurs (See Eq. 29).
The proper values of 0o where RA = minimum and of (Rz)min itself
are given in Table E. Directions for the use of the data presented in
this paper are included in Section 4. 1 with the proposed applications.

Since the reflectivity is expressed as a function of a combination
of 0o, n, and k, there are different ways to illustrate the relations
among them. One method we will use is the customary one of plotting
the reflection coefficietit versus the angle of incidence. In order to
give a good survey, a set of graphs is provided, with each plot
representing a system of curves for which the real part of the index of
refraction n is held constant and k is varied from 0 to 6. Figures
3-10 illustrate the tendencies of R, and R2, whereas Figs. 11-18 con-
sider the reflectivity R for natural or unpolarized radiation. It will be
noted from the curves of the reflectivities R, R1, and R2 that each
index of refraction has its own peculiar curve which is always different
from that ,or another index of refraction.

Another very useful method is to plot the numerical results of the
Fresnel equations obtained for a constant angle of incidence 00, and to
consider each of R1 , R2 , R, R2/R 1 , or P separately versus n, for
constant values of k. Such graphs were drawn and used to prepare
Ar;and diagrams. They also proved to be the most economical method
fox determining material constants from experimental results, as will
be discussed in Section 4. 2 (Fig. 69). The majority of the illustrations
make use of the Argand diagram, which plots the reflectivities R1, R?,
and R and the degree of polarization P, for a constant angle ot
incidence. These "isoreflectances curves are shown in Figs. 19-49,
while the degrees of polarization are given in Figs. 50-59.
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As stated in the preface, the resulting graphs and tables are valid
both for N un~ki, andN on - ki, (n20, kO).

3. 1. Reflectivities R, and R& at Air-Dielectric Interface Versus O0,

Thin ir thc canc where k• a 0. From Figs. 3-10 we learn that R1 ,
and R3 are equal to each other at normal incidence. Without exception,
the curves for R, have their minimum at normal incidence; as the angle
of incidence is increased, the curves tend monotonously toward unity.
The curves for R2 , however, first decrease to smaller values until
they reach their minimum Ra a 0, then as the angle of incidence is
further increased they also tend monotonously toward R2 = 1 (total
reflectance), which they reach for Bo = 90*, if n > 1.

Those cases In which ti < I (internal reflection) are peculiar in
that total reflection occurs from incident angles smaller than 90'
beginning with e0 = sin"1 n. The particular incident angle for which Rz
becomes zero is named Brewster angle, and for this angle the relation
tan *o = n, called. Brewster's law, is valid. For the Brewster angle
the degree of polarization P becomes unity, or 100%, because there
exists only the reflected wave, which oscillates perpendicularly to the
plane of incidence. The reflection at the Brewster angle is the only
instance where the reflected radiation is completely polarized in one
single plane, which means that the incoming radiation has to be a
harmonic oscillation.

3. 2. Reflectivitics R, and R3 at Air-Conductor Interface Versus 0o

The only difference between the reflection curves (see Figs. 3-10)
for conducting material (k > 0) and the curves for dielectrics ( k = 0)
is that its the former the curves for the reflectivity R2 never reach the
value zero regardless of what the real angl. of incidence may be. The
angle of incidence at which the minimum of RA ý 0 occurs with con-
ducting material is called 'pseudo Brewster angle," because here the
Brewster law has only a formal meaning and the angle does not have
the physical significance it does in the case of dielectrics. As a
matter of fact, we observe in this (1) only partial polarization occurs,
(2) the maximum degree of polarization does not occur for this angle,
and (3) the electric field vectors of the reflected and diffracted radiation
are no longer perpendicular to each other. The direction of the
diffracted wave, which is of limited penetration depth, is given by the
angle 71 which follows from
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sin So a n (0o) (53)
sin T,

where the real index of refraction n a n (So) is defined by

n (9o) * (3 0)' + sin' 0o (54)

The term q (0o) is the same as that which appears in the Fresnel

equations in Chapter 1. The angle of incidence 0o, at which the
reflectivity RA becomes a minimum, is discussed in more detail later
in this chapter.

Associated with the reflection, of which we considered hitherto
only the energy loss by absorption and transparency for both amplitudes,
there is also a delay in the phases of the amplitudes. As stated in the
first chapter, it is assumed that the incoming radiation consists of two
harmonic waves, in phase with each other and polarized in two planes
perpendicular to each other. Therefore, the graphic representation
of the resultant of the two amplitudes in a straight line, intersecting
the origin with an angle 4 (in this case 4 = 450) with respect to the
amplitudes. The angle 4 is called the azimuth of the vibration and is
defined by

tan *i (55)

This definition is arbitrary, and certain textbooks prefer to designate
the complemnent angle of 4 as the azimuth. The azimuth of the
reflected vibration is given by

tan Er =4 (56)

II

We know from physics that in reflection on dielectrics the wave oscillat-
ing perpendicularly to the plane of incidence experiences a phase shift
of 1800 with respect to the original wave for any angle of incidence. The
amplitude perpendicular to the plane of incidence, however, will remain
uncnanged for all angles of incidence whic~h are smaller than the
Brewster angle. If the angle of incidence is beyond the Brewster angle,
the amplitude Ell of the electric field vector E will show a phase shift
of 1800, and, consequently, both reflected waves will be in phase again.
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In the case of a conductingmaterial, thaere is a monotonous decrease of
the phase difference 6 a 1800 at normal incidence down to 6 a 0* at
grazing incidence. This means the two amplitudes will never
become zero at the same time unless 6 = 1800. The geometric
picture of the end of the electric (or magnetic) field vector will be
a circle or an ellipse. The phase shift can be calculated by the
equation

2 P(01sin @o tan 00
tan 6 a (57)

sin3 00 tana 00 - (c 3 .)+ p'(o)

and is a function of the index of refraction and the angle of incidence 90.
This study considers the determination of material constante from
reflection measurements only, and it should be stressed that the know-
ledge of reflected amplitudes alone can tell nothing about the phase shift.
From the data on R1 and R& we can obtain only the lengths ot the
axes of the quadrant or rectangle which are circumscribed about the
circle or ellipse of polarization. These curves have four points of
contact with the frame, which are given by

p1,a (**Vj,*V¶ cos 6), and

P,,,4 (*.r" cos,

In experimental work, particularly in optics, that angle of incidence
where the difference in phase is 900 is of special interest, and is
called the *principal angle of incidence: N For this case the axes of the
vibration ellipse are oriented in the direction of the field components
of the vector E. The corresponding azimuth is defined as the "principal
azimuth," a,:4 is also given by Eq. (56).

Some physics textbooks explain that the principal angle of~incidence
is the same as the angle at which the reflectance curve of RZ has a
minimum. This is generally not true; the assumption was apparently
based on mathematical formulations which are used in metal optics and
are of limited validity even when large values of n and k are concerned.
The approximations employed yield the same angle 0o for R, = minimum
and for 8 = 900.
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Using the reflection coefficients R, and Rz, the degree of
polarization P is defined as

R, - R? 1 - - tana *-p = = R, = ... .(58)

RI + RZ 1 + L' tan? * + 1

and as long as we consider specular reflection only, the degree of
polarization is always positive. The maximum degree of polarization
occurs if Rz/R, is a minimum. Contrary to statements appearing in
some textbooks, the angle of incidence 0o at which the ratio of R2 /Rj
is a minimum is not identical to either the "pseudo Brewster angle" or
the "principal angle of incidence." The (Rz)min, (R?/Ri)min or Pvnax
and 6 = 900 each occur for a particular angle of incidence, with a
maximum variation in these angles of between 00 and 450. Only in the
case of dielectric materials are the incidence angles 0 0 for (Rz)min
and for 6 = 900 the same. As a visual aid, the case N = n - ki = 0. 6
-0. 6i is graphically illustrated in Fig. 65, with the curves representing
R1 , RZ, R3/Rl, P and 6 plotted against 0o. The three distinct angles
which appear are considered in more detail in Section 3. 10. In order
to clarify the distinction it is proposed here to name the above-
mentioned characteristic angles of incidence First, Second, and Third
Brewster Angles. The following definitions are based on the
assumption that the incoming wave consists of two equal amplitudes
which oscillate perpendicular to each other, one perpendicular and one
parallel to the plane of incidence:

First Brewster Angle - Pseudo Brewster Angle:

The angle of incidence e0 for which the amplitude 1/R of the
wave oscillating parallel to the plane of incidence is a minimum.

Second Brewster Angle:

The angle of incidence e0 for which the ratio of the reflected
intensities (R3 /R1 $ is a minimum, or of the same tenor, for which the
degree of polarization P = (R1 - RZ)/Rj + HR) is a maximum.

Third Brewster Angle Principal Angle of Incidence:

The angle of incidence go at which the two amplitudes of the
reflected wave have a difference in phase of 6 = 900.
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3. 3. Reflectivity R of Unpolarized Radiation Versus (o

If a source emits electromagnetic radiation, the vibrations
of which oscillate in all transverse directions perpendicular to the
wave's path, such radiation is called unpolarized. Natural light is an
example of unpolarized radiation. The numerical -lue of the
reflection of such a radiation R is given by the arithmetic mean of R,
plus R.. Figures 11 to 18 (Chapter 2), which illustrate R versus 0o,
show that as long as n and k are small and the angies of incidence are
not too large the reflectivity R is nearly constant; the curves have
their minimum at normal incidence. For a real index of refraction,
this minimum of the reflectance occurs at normal incidence as long as
n 5 3.73Z (see also Refs. 8 and 9, p. 399). If we follow the axis of n
to larger values the incidence aagle for R = minimum increases very
fast at first, reaching 41 ' for n = 3.80 and 57.4' for n = 4.00. This
angle gradually approaches the Brewster angle, but becomes identical
only for n = -. Section Z. 8 contains a general discussion of the
occurrence of Rmin for the complex plane of N.

3.4. Reflectivity R at Normal Incidence, and N

The reflectance at normal incidence (eo = 0°)* was earlier
given by Eq. (45)

R - (n-l)Z + k(
(n+l)? + kz

For the illustration in the Argand diagram, we use the following equation
which is derived from Eq. (59) after an elementary transformation:

In _ I-R + 4 (60)

This develops into the equation of a circle with the radius

l-R

around the center C which has the coordinates Pc(I t- , 0).

*This case was also investigated by T. S. Moss (Ref. 10).
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Figure 19 illustrates this case using isoreflectance curves representing
R = 0. 1 (0. 1) 1. 0 of the incident radiation. Total reflectanc'- occurs
only if N is purely imaginary. Where n and k are large in comparison

with unity, Eq. (60) caa be replaced by

(n -LR +k +R(1
"1l-R/ + =I-R) 61

and if n = k and >> 1, Eq. (59) simplifies to

n-i
R = M+1 (6Z)

n+I

3.5. Reflectivity R, and N

The curves for R, have the same circular shape for small angles
of incidence 0o as for normal incidence (Figs. 20-29). As the angle of
incidence is increased, the curves draw closer to the point P (1. 0, 0)
With slanting incoming radiation (0o between approximately 700 and 900),
all materials exhibit a high reflectance, Total reflectivity occurs also
for pure real indices of refraction for which the angles of incidence 00
are defined by the inequality 0 < a< sin 00.

3. 6. Reflectivity Rz and N

All curves for R? = constant (Figs. 30 to 39) start in the arpa
where n < I and k is very small, reach more or less high values of
k and n, and then return to the axis of abscissa k = o, and enter the
adjacent quadrant in which they describe symmetrical curves. For
this reason, the illustrations cover only one quadrant of the complex
plane. This symmetry exists without any exception for all curves of
R, R1 , Rz, and P.

As stated in the preface, a wave propagation across an interface
between two absorbing materials results in a relative complex index of
refraction of the form N = n + ki (n > o, k A o), if the phase of the
complex index of the first medium is smaller than the phase of the
second medium.

The curves for flz do not have the simple shape of the R, curves,
being convex in some regions and concave in others. Because of the
occurrence of the Brewster angle, the curves for the smaller values of
Rz deviate from the circular form, and the curves for the lower
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reflectance degenerate into two branches and have four points of inter-
section with the axis of the abscissa. If Go < 450, we observe total
reflection from n > o to n = sin Oo. For real indices and for complex
indices with small values of k, the reflectivity Rz decreases from I to
0 if n passes from n = sin go to tan eo <n < 1.0. This reflecti. n
maximum, however, is always smaller than unity.

If go > 450, the point in the Argand diagram for Rz = 0 is situated
on the axis of abscissa on the right-hand side of the point n = 1.
Remarkable amounts of reflection will occur for indices of refraction
close to unity, an the reader can observe in Fig. 39 wbhch represents
Rz for 0o = 850. For values of n <1, the area close to k = o represents
internal reflection and the reflection of waves in a plasma. A detailed
description of these cases would require numerical values for N with
smaller intervals for n and k than the 0. 1 used in our tables. .

3. 7. Reflectivity R and N

The reflectance R of unpolarized radiation (e. g. natural light)
is shown in Figs. 40 to 49. These graphs contain the combined
irregularities of R, and R2 and, therefore, deviate further from the
circular shape than do the individual curves for R, and Rz.

3. 8. Degree of Polarization P and N

The degree of polarization P, defined by

R, - RZ I - R.2

P -- = R, (63)
R, + R3  i+Rz

R,

is illustrated by Figs. 50 to 59. This equation can be written

R 2_1 -P

R, 1 +P

so that the graphs also illustrate the ratio of the reflectivities. A
P-to-R3 /Rl conversion table is provided below.

* Reference 11 presents some graphs for R, and Rz for 00 =20

ann Oo = 670.
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P _ I
0 1

0.1 0.8181

0.2 0.666

0.3 0.53846

0.4 0.42857

0.5 0.333

0.6 0.25

0.7 0.17647

0.8 0.111

0.9 0.05263

1.0 0

R2  P

rhe smaller the ratio Rz/R 1 , the grenter the degree of polarization.
Polarization reaches the maximum value of 100% only for dielectrics.
The curves are again similar to circles with one center at n = tan 00,
k = o (Bre.vater angle), and another at n = 1, k = o. The latter is not
illustrated in all graphs due to the fact that the curves cannot be
distinguished on the chosen scale. It is remarkable that for small
angles of incidence polarization occurs only in a small area of the
diagrams. If we consider multiple reflection where all the planes of
incidence are parallel to each other, we have to take into account the
incoming intensities for each wave separately. The degree of polariza-
tion is then given by

03 M L (U)SR 1 "- • R
V !!0 1I V0 R

P I IT (64)
SR, + RZ

0 0

92



where Ri(,) and R?(O) stand for the squares of E, and E, respectively,
which are the components of the electric, field vector of the origirnal
wave. The absolute values of El and EZ are always considered unity.
Since R? is always smaller than R1 , we can see from the above equation
that multiple reflection is a good means to obtain a radiation with a high
degree of polarization from a given source.

3. 9. Occurrence of the Characteristic Angles of Incidence

Section 3. 2 mentions three characteristic incidence angles,
defined as the First, Second, and Third Brewster angles. We obtain
numerical expressions for the First and Second Brewster angles by
differentiation based on application of Eqs. (32) and (33). To do this
requires tedious analytical labor and leads to immense and unwieldy
equations. * In order to discuss the three angles in the whole 'ýomplez
area of the index of refraction, we chose a technique which avoids
these complications. This method is described below for the First
Brewster angle.

3.9.1. First Brewster Angle and N

The problem here was to illustrate the relation between
the angle of incidence Boat which Rz is a minimum, and this minimum
itself. For this purpose, the Argand diagram was again selected. A
fi!-st sketch was prepared by taking the minimum values of R? and the
corresponding angles 00 from Figs. 3 to 10 and similar graphs and
fiom special tables which are not published in Lhis paper. This method
does not give sufficient accuracy to prepare a serviceable plot of the
subject, since (i) the minima of the RZ curves are often very flat, and
(2) in many of the cases the R? curves change so rapidly with the angle
of incidence that it would not be feasible to tabulate all the data required
to find the exact values of 0 o; even the special 20 -tables [ 0 00(20) 880)
which served to supplement the published 5'- tables CeO = 00(50) 850)
were not sufficient for this purpose. It was neceossary to use computer
methods to obtain the desired numerical values of (Rz)min and 0o for
given indices of refraction by successive approximation. Since these
data have not been published and are of special interest, the results are

* One of the known metbods for approximating the angle of minimum of
reflectance is that proposed by Quincke. However it was found that it
holds only if n and k are large ann then only in special cases.
C. Boeckner (Ref. 12) considers it impossible to solve this problem
explicitly for n and k.
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presented in Table E (Volume II) of this report. This table contains
(RZ)min and the corresponding angle of incidence 0o for all combinations
of n = 0. 1(0. 1)4. 0 and k = 0. 1(0. 1)6. 0. The corresponding graphical
illustrations are given in Figs. 60 and 70.

The carves for 90 = constant (Go > 500) are of oval shape with the
major axis in the direction of the ordinate axis. For smaller angles
they lose the oval shape and cross the ordinate axes obliquely. The
crossing angles are smaller for curves closer to the origin, with the
shape of the curves resembling a clover leaf.

3. 9. 2. Second Brewster Angle and N

The case where the degree of polarization P has ite
maximum was investigated in the same manner as the First Brewster
Angle; using a corresponding set of graphs and tables. The same
problems were encountered. The ratio Rz/Rz, which has to be a
minimum and is easier to handle, was used instead of P for the final
calculations, performed by computer. The results are given in
'Cable F (Volume II) and Figs. 61 and 71. The curves have an oval
shape but differ in that the major axis lies in the direction of the axis
of abscissa.

. 9. 3. Third Brewster Angle and N

For the principal angle of incidence there exists a

rigorous equation which is given in the literature as (Ref. 13, p. 363)

sin4 e0 tan4 Bo = n4(l + W2)2 - 2n2(l - xZ) si0 e0 + sin4 e0  (65)

Since n? + kl is generally much greater than unity, optics of metals
takes into account only the first term of the right-hand side of this
equation using the form

+ kZ = sind 00 tan? 00. (66)

This study, however, seeks a rhorough discussion of the reflection
characteristics for all kinds of materials and will use the exact
expression. On this basis Eq. (65) can be written
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(n? + k) 2 -2 sin2 0o(z - k9) = sin4 0o tan4 eo - sin4 ) (671

or

(nW - sin2 00)? + (k0 + sin? 0o)2 + Zn2k? = sin4 00 (tan4 0o + 1). (68)

These equations repro-Rent CaRainian curves in the Argand diagram

(Fig. 62) for each constant angle of incidence. The curves a-e defined

by the bipolar equation rr 1 = a?, or expressed in words, they are the

loci of all points of which the product of the distances from two fixed

loci, separated by a distance of 2c, has the constant value a?. Using

our nomenclature, the curves have the equations

(nz + k0)' - Zc' (n -k) = a' - c_4 (69)

*) The curves 6 = f(n, k, 9o), where n and k are considered as
parameters, all have two common points, i.e. 8 = 1800 for 0o = 00
and 8 = 00 for 0o = 900. Each one of the curves, therefore, crosses
the line 6 = 900 an odd number of times to the right of 0o = 0. For
physical reasons, we are interested in reading these intersection
points, and must consider either one or three values 0o fcr 6 = 90.
Those values satisfy the equation

tan8 00 - (A - ZB + 1) tan4 e 0 - Z(A -B) tanz So 
- A =o (67a)

which is obtained from Eq. (67) by substituting tan 0o/l + tan7 Oo for
sin 8o, where

A = (n? + k2)-

B=n 2 
-n?

As is seen, this equation of the 8th order contains only even powers of
the unknown. For the reason given above, it follows that Eq. (67a) has
either one or three positive roots in tan 9o. In the case of three positive
roots, two of them may coincide. This case is physically better
described by the words: "We have two different values for tan 0o."
Thus we distinguish three cases:

(a) one single positive root e0;

(b) two distinct positive vrlues satisfying Eq. (67a); and

(c) three distinct roots.
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where

c = sin e0

a = sin 90 tan 90

In the interval of the angle of incidence 0 < eo 5 900, the Cassinian
curves take on different shapes. We can distinguish three cases:

(a) sin 8o = sin 0o tan 90

(b) sin e0 < sin eo tan eo

(c) sin eo > sin eo tan 0o

Case (a) occurs if a = c, i.e. e0 = 45c; this is the lemniscate of
Bernoulli with the pole at the origin. Case (b) occurs if c < a, i. e.
o> 450. For values of eo between eo 0  450 and tan 80 = 1tl, the

curves are general lemniscates with their two saddle points at the
ordnitate axes; for greater values of eo the curves are Cassinian ovals,
with their longer axes along the axis of abscissa. Case (c) occurs if
c > a, i. e. 8o < 45'. The curves for 8o <450 are within the lemniscate
of Bernoulli, and each branch has two points of intersection with the
axis of abscissa. This case is illustrated by a special drawing (Fig. 63).
It will be observed that the unequal relation between the principal angle
of incidence and the index of refraction no longer holds for a certain
region of small indices. This "region of multiple principal angles of
incidence" is bounded by three curves: (i) the axis of abscissa, (2) the
envelope of the curves 8o = constant, and (3) approximately the curve
for eo = 330. (More precise investigation of the nature of this third
boundary does not seem to be worth the amount of work involved).
From an inspection of numerical results it was observed that materials
with an index of refraction located on boundaries (2) and (3) have two
principal angles of incidence, and that the materials whose index of
refraction falls within the region considered, including the axis of
abscissa, have three principal angles of incidence. The two points of
intersection of the curves eo = constant with the axis of abscissa have
a physical interpretation. The point on the right-hand side represents
Brewster's law for which Rz = 0. For the other point v'e have total
reflection, but the two amplitudes of R, and Rz have a difference in
phase of 900.
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With application of the approximation given by Eq. (66), the curves
would degenerate into circles and show only fair agreement within the
area of large indices, requiring the further restriction n - k to obtain
accurate results. It follows from Eq. (68) that the points of intersection
with the axes are

n =0 k =sin 00 tan eo

{:= tan 00
k n0 =tan eol Vcos Zeo

3.9.4. Angle of Incidence eo for Unpolarized Radiation RnIan
and N

This case was discussed briefly in Section 3. 3 and
illustrated in Fig. 64 from the available tables and graphs. This
particular graph serves as an illustration only and does not claim to
be as accurate as the other figures. It will be noted that there is an
area for which the minimum reflection occurs at normal incidence,
with a small surrounding belt in which the angle of incidence increases
very fast. Only the curves for eo = 600, 700, and 800 are represented.

3. 9. 5. Angle of Incidence e0 = 450

There exists a remarkable relation between the reflection
formulas for R, and Rz for the angle nf incidence Oo = 450. This can
be shown by Eqs. (32) and (33), which we note here again:

- - cos eo +
R, 0= (70)

1-+ Cos Go)01 ) o+
- cos 0o + E-) - sin e0 tan o +R z =I C'271

Z q + cos e + q + sin oo tan Go)2 +(L)2
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The first factor on the right-hand side of Eq. (71) is identical with the
right-hand side of Eq. (70), and the only difference between the two
factors of Eq. (71) is that the second contains sin 00 tan eo instead of
the cos Oo of the first factor. Both factors become equal if

cos eo = sin eo tan .eo.

This implies that if e0 = 450 the Eqs. (70) and (71) yield:

R1 =R 2

or For

R, Fo = 450 (72)

and only

P 1 - R
1+R ,

Therefore, the curves for R1 and for the ratio Rz/R 1 (but not for P),
if plotted versus the angle of incidence, have a common point. In
Fig. 65, for N = 0. 6 - 0. 6 i, the curves RI, R2 , and R2/Rj are
represented simultaneously. The relation expressed by Eq. (72) is a
valuable tool in experimental work for (1) checking the influence of
matter located between a radiating source and a reflecting surface,
(2) determining properties of the matter itself, or (3) if R1 Z = R? is
observed, use as an aid in locating a transmitter, the radiation from
which hits the reflecting surface at an angle of incidence Ac = 450.

3. 9. 6. Linear Eccentricity of the Polarization Ellipse

Associated with the reflection is a phase shift between the
two components of electrical field vector E, which vector describes a
conic section (as a special case of Lissajous-Curves), expressed by
the equation

- ZExEa cos 6 + sinZ 6 (73)

Figure 66 illustrates this case using a harmonic wave with the amplitudes.

Ex = a1 sin Wt

Ey = az sin (Wt+6 (71)
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where

a, =0. 5

b, 1.0

6 = 600

This example describes all instances in which R, : RZ = 4 : I and the
phase shift 6 = 600. The linear eccentricity e is defined by

az - bZ = ez (75)

where a and b are the two semiaxes of the ellipse. It is known from
geometry that the following equations hold (Ref. 14):

ab a, a z s in 6 (76)

az +bz a2  + azz

az + b' = a1 z + a,' (77)

From these we obtain

ez = az - bZ = V(aA + aZ)' - 4a,2 a,2 sinz 6 (78)

Let us consider the linear eccentricity of the polarization ellipse of
a reflected radiation as a function of the angle of incidence 90 and the
index of refraction N. Replacing a, and a? with the reflection
coefficients R, and R., we obtain for the square of the eccentricity

ez = az - bZ = V(R1 + R2)2 
- 4RR 2 sin' 6 (79)

For a particular N, we read the R, and R2 values from the tables and
determine 6 using the equation

. POO) sin Go tan 0o
tan 8 01 Iqz(eo) pz(o) (80)

sin eo tan eo-T +

A numerical example for N = 0. 6 - 0. 6i is illustrated in Fig. 67 which
represents the curves ez, R1 , R2 , and R, - R2 .
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OF THE LINEAR ECCENTRICITY OF THE POLARIZATION ELLIPSE

FOR N = 0.6 - 0.6i

At the Third Brewster angle, the phase shift is 6 = 9Q0 and the
•,o axes a1 and b! of the ellipse are symmetrical to the electric field

components. The following relations hold:
a =7 Ri

= a?0.

2e =aM -7b=R 1 -R 2

and the curves for e2 and RV - RI have a point of contact. This ellipse

has the least linear eccentricity of all the ellipses which can be drawn
in the rectangle with the sides ha1 and 2b1 (if a = a1 and b = bt).

However, there is no basis for believing that the minimum of e at the
phase shift 8 = 90° is also the minimum of the curve e if e is con-
sidered to be a function of t o. The angle of incidence el for which
e = minimum is a character-stic angle of incidence, distinct from these
Brewster angles. But it is worth mentioning that the function

e = e (1o, n, k) has application in experimental work.
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In our example N = 0. 6 - 0. 6i, the minimum of ez occurs

approximately at 0o = 50° while 6 = 900 occurs at go = 51. 20. From
the study of other values of N, it was observed that there are cases
where the difference between these angles is even larger.

3.10. Summary

The principal results of these studies can be summarized as
follows:

Angle of Reflection
Material Incidence Characteristics

go

00 R, = Rz < 1

Dielectrics
and 450 R, = R,

Conductors

90g R, = R? = 1

Dielectrics Brewster Angle R2 = 0, P = 1

First Brewster Angle R? = Minimum

Second Brewster Angle R2 = MinimumR,

Conductors P = Maximum

Third Brewster Angle 6 = 900

Careful inspection of the material presented shows that, where N is
complex, the following relation holds, without exception, for the three
Brewster angles for conductors (denoted by 6e., 9z*, and e3*, in
numerical order):

00 < e0* < 03.
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Chapter 4

lPROPOSED APPLICATIONS

'lThere are several applications for the tables and graphs con-

taining the numerical results of the Fresnel equations. In general,

the problems in which they would be useful fail into two types:

(1) extracting the numerical values of the reflectance directly froui

the tables if the index of refraction of the material and the angle of

incidence of the radiation are known (Section 4.1); (2) determinir g

the index of refraction from a combination of the published informiation

and experimental data (Section 4.2).

4. 1. Use of the Data

The numerical values for the Fresnel equations are provided in
tabular form in the Appendix (Volume II). These numerical values

are based on calculations where both the components E1 = El and

Ez = E1, of the electric field vector E of the incoming radiation were

taken as unity, and, consequently, their absolute squares I = I2, and

2 = I l, which represent the power intensities, also become unity.

Since the data presented in the tables and graphs are based on the

standardization factor 2, the reader is reminded that all the numerical

values have to be divided by 2 if the total incoming radiation has com-

ponents in both planes -- perpendicular and parallel to the plane of

incidence.

The selected ranges of the index of refractioa N = n - ki,

n = 0.1 (0.1) 4.0, k = 0.0 (0.1) 6.0, and the angles of incidence

eo = 00 (50) 850 cover the area of the index of refraction around the

origin of the complex plane for N to provide a basis for a more

detailed survey of the very complex problems of reflection phenomena;

the chosen density of the data should be sufficient for interpolation.

Using Tables A and C, the numerical values for the unpolarized radi-
ation R = 1/2 (R1 + Ha) and the degree of polarization P = (RI - RZ)

(RI + Rz) can easily be calculated, while in Tables B and D the

reflectance R1 , R2, and R Pre identical. Tables E, F, and G were

prepared to cover the special cases, st-h as (Rz)min, Pmax, or
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(R2/Rl)min, and 6 = 900. The accuracy of Tables A - G is 1 1 of the

last communicated decimal. The second decimal of the index of

refraction can easily be determined by interpolation.

Various authors give the components of the index of refraction

N = n - ki in the form n, -k? and 2nk. Data in this form lead easily

to n and k if we write Ix

2nk y

and use

n - + + x Y(81)

4.2. Determination of N from Reflection Measurements

The Fresnel equations now constitute a solid foundation in
physics; much of the experimental work performed in this area during

the last century showed good agreement between experiment and

theory. Since all the quantities R1 and RA are functions of $o, n, and

k, the numerical values of n and k in general can be determined if

the values of the other three are known.

The index of refraction can be determined experimentally by

measuring either the transparency or the reflectance of radiation.

However, massive pieces of conducting materials are opaque for a

very small thickness; therefore, the experimental determination
which applies the transmitted radiation is relatively limited and has
to take int. account the internal reflection also. A number of such

experimental methods are known, and their appropriateness depends

on which region of the electromagnetic spectrum is being considered.

A frequently applied method uses the reflectance at the principal
angle of incidence.

It is beyond the scope of this study to discuss the numerous
experimental methods which can be used. For our purpose we will

assume that the experimental results are available, and will consider
how we can use them for an economical determination of the unknown
material.
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4. 2. 1. Specular Reflection Under Ideal Test Conditions*

A number of combinations can be selected from the plotted

data. We can distinguish the following •wo major groups:

Group 1: Experimental data of the reflectance for any
angle of incidence.

Group 2: Experimental data of the reflectance for
characteristic angles of incidence.

As mentioned previously, we denote as characteristic angles the
three Brewster angles, the angle 00 = 450, and the incidence angle
for which the unpolarized radiaton has its minimum.

The following combinations of the data may be obtained from
experiments.

Group 1:

a. RI, Rz, or R for two different angles 80 .

b. R, and Rz for the same angle 00.

c. R3/RI or P for two different angles.

Group 2:

d. (Rz)min and 60 of the occurrence.

e. (Rz/Rl)min, or Pmax, and 0o of the occurrence.

f. RI, R?, R or Rz/RI at the principal angle of
incidence 00.

g. Rmin and 00 of the occurrence, limited to
larger angle of incidence where 0o > 500.

* Other studies in this area .re described in Refs. 12 and 15-18.
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The following examples use data which can be taken directly from
the tables and graphs.

Example: Group I

By utilization of monochromatic plane-polarized
radiation of the wavelength X, of two equal amplitudes, the following
data were obtained:

Angle of Incidence R, R? Rz/R1 P

400 0.753 0.616 0.818 0.10

(Fig. Z3 33 53)

750 0.910 0.387 0.425 0.40

(Fig. 27 37 57)

It follows from the measured data that the index of refraction of
the test object at e0 = 400 will be a point on the isoreflectance curve
R, = 0. 753 (Fig. 23), on the curve Rz = 0.616 (Fig. 33), and on the
curve P = 0. 10 (Fig. 53). By the same procedure we obtain the results
for So = 750. We now have six curves we can consider, and if all were
plotted on one graph, they would have only one intersection point as long
as the measured data are of good accuracy.

In this manner, Fig. 68 illustrates examples of a, b, and c of the
first group. For clarity, only two curves of this example were plotted
together, and only that portion of the curves near the cross point. It
will be seen that the three pairs of graphs bisect each other at the same
point in the complex plane. The numerical values of the coordinates
give the components of the index of refraction of the material. In this
particular case, the result is

N = n- ki - 1.90 -4.00 i.
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From Fig. 1, which illustrates the index of refraction as a function
of the wavelength, and from handbooks such as Ref. 5, we can look for
elements with similar refraction indices, e.g.

Ni: N = 1.91 - 3.93i for X1, = 6500 A.

Cr: N = 1.895 - 4. 038i for X, = 4150 .

If the applied wavelength is identical to one of those above, then
the material has been identified. Provided that the exper'iment was
done with a wavelength radiation X3 which is different from %I and X2,

the name of the material is still unknown (if not known from other
information). Once the index of refraction is known, the tables and
graphs enable us to study special cases, such as the variation, of the
reflectance with angle of incidence and the occurrence of reflection
phenemena, in more detail and in a relatively short time. However,
the equality in index of refraction does indicate that: (1) the three
materials have the same reflectance curve with respect to angle of
incidence, and (2) in absorption, transparency, and emission, the test
material for Xl3 will be comparable to nickel at X, and chromiumn at k.

Determining N by means of the illustration in the Argand diagram
is not always the most economical method. The plots of R, and Rz in
the Argand diagram were prepared from two graphs on which k was
plotted as a function of n and R1 , and n and R2 , respectively. Figures
69a and b are examples of such plots for the angle of incidence 0o = 400.
Let us. assume the following experimental results:

0 o = 40 0  R, = 0. 753

R? = 0. 616

and draw in Fig. 69a the straight line R, = 0. 753 and in Fig. 69b the
straight line R? = 0. 616. The index of refraction is read from the
points where these straight lines separ-tely intersect the curve for the
same k at the same values of n. Again the result for N becomes
N = 1.90 - 4.00i.

A recommended method for making a quick but precise determination
of the index of refraction s to first estimate the value of N by using the
illustration in the Argand diagram, and then refining this value by pre-
paring plots like Fig. 69 from information presented in the tables. For
the last, only the area around N has to be plotted. If these plots are
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prepared on transparent paper, we can match the straight lines R - R
and R = R? on the two graphs and can more easily determine n and

Example: Group 2

Reflectance values for the characteristic angles of
incidence may be available from experiments. Examples of such data
are:

C haracteristic

Angle for go A, R, Rz/Ri Pmax

(Ra)min 61* a 45. 18 0.4535 ---

(Rz/R1)miu 09* a 500, 76 --.-- -- 0.6375 0. 221

6 X 900 03* a 600 0.7675 0.4916 0.6405 0.219

The various combinations applicable to this group can be derived
from Fig. 60 to 64. We can combine any characteristic angle of
incidence with a set of curves representing the numerical values of
(1) RI, (2) R2 , (3) RI/Rz, or (4) R at this angle. Figures 70 to 72
were prepared by this method.

The sample experimental results identify a material with the index
of refraction N = n - ki = 0.4 - 1.2i, as illustrated in Fig. 73. The
following indic~s of refraction, which approximate this value were
obtained from (Ref. 5):

Cesium: N = 0.321 - 1.2 i for X = 5890 A

Zinc: N = 0. 46 - 1.17 i for X = 2749A

Zinc: N = 0. 47 - 1. 60 i for X = 2981
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It is evident that in experumental determination of N all the
reflected radiation has to reach the receiver. If attenuation occurs,
for instance by absorption on the path from the transmitter (antenna,
light source) via the reflecting surface to the receiver (antenna, photo
cell, etc. A the experimental data will not give the true value for theindex of refraction. Power could also be lost if stops such as
diaphragms are used in the instrumentation or if the source illuminates
an area larger than the examiner considered. Unless we are con-
cerned with the path through an ionic medium, the effect of these
exterior influences will generally be of the same proportion on both
amplitudes, which we consider perpendicular and parallel to the plane
of incidence. As an example, let us evaluate experimental data which

are incorrect due to unknown influences before and after the reflection

SOther studies in this area are described in Refs. 19-20.
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Example: The index of refraction N of the reflecting

material for the employed wavelength is N, = nj - k1i = 2. 00 - 4.40i.

The R, and R2 values for the angles of incidence considered, 0 o = 700

and eo = 800, were obtained from Tables A to D in (Volume II):

Theoretical Data

0 o R, RZ R 2 /R 1  P

700 0.89431 0.44943 0.50254 0.33108

* 800 0.94494 0.40836 0.43215 0.39650

Due to exterior lieluences, the measured intensities may be only 90%

of the theoretical values:

Experimental Data (Influenced)

go R, R? R2/Rj P

700 0.80488 0.40449 0.50254 0.33108

800 0.85045 0.36752 0.43215 0.39650

We prepare graphs in the form of Figs. 74-76, and can then determine

N from the measured data. Figure 74 represents the curves for R1

and RZ for 8 = 700, Fig. 75 does the same for 6 o = 800, and Fig. 76

contains the curves for P at both angles. We see that the adulterated data

for RP and R2 produce two different values for N, designated N1 and

N3 , both of them different from NI, the true index of the material

considered. The results are

from R, and Rz 00 = 700 N2 = 0.79 - 1.76i

* (Figs. 74-75) O 800 N3 = 1.43 - 1.80i

from R3/R1 or P go = 700 N

t ~N, = 2. 00 -4. 40i(Fig. 76) go 800 J
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The ratio Rz/R1, or the degree of polarization P, was not influenced
by the experimental conditions, and this plot (Fig. 76) gives the true
value for N, which is N, = 2.00 - 4. 40i. Figure 77 illustrates all
three pairs of curves in the Argand diagram. The reader can easily
see that in the cases of adulterated measurements all the indices N2

for 9 = 700 will be located on the curve P = 0. 33108 which goes
through the points of N, and N?, and for 0 = 800 on the P = 0. 39650

"* curve which goes through the points of N, and N3, and that only one

, curve for P = constant is responsible for each angle of incidence. It
should be understood that our example was not limited to consideration
of the same discrepancy for both angles of incidence, i. e. 010% of the
theoretical data in both cases. If, for inatance, in an experiment we
would receive only 88% of the theoretical values of R 1 and R? at 00 = 700,
and 93% at Go = 800, the corresponding indices would be located in the
first case on P = 0. 33108 below N?, and in the second case on
P = 39650 between N, and N3. In order to get a picture of how far the
reflection coefficients can depart from the true response, if experi-
mental results are evaluated, an illustration of R1 and Rz versus 0o
for N, = 2.00 - 4.40i, N? =0.80 - 1. 70i, and N3 = 1.4 - 1.8i is given
in Fig. 78. The curves 0.9 x R, and 0.9 x R? (numbered 10 and 11,
respectively) are also drawn in for N, = 2. 00 - 4.40i. Such reflection
curves no longer follow the Fresnel equation for any index of refraction.
This means that if we write the Eq. (32) and (33) in the form

R, =x, . f, (n, k, 8o)

RZ =x 2 . fZ (n, k, 9o), (82)

the functions fl and f? represent the Fresnel reflection coefficients in
the entire interval 0 < eo _5 900 only if the factors x, and x2 are 1.
Reflection coefficients obtained from adulterated experimental data can
only be descri.,ed by indices which vary with the angle of incidence.
These indices will not be considered here; however, it should be
mentioned that they are not identical to the n = n(Go) of Eq. 52.

As another example, let us consider the experimental data
received when tht radiation source illuminated the total reflecting
surface at normal incidence but the cross area became smaller with
the factor cos 00 at oblique incidence. The factors x, and x2 of Eq. 82
would be cos 0o and the reflection curves would be curves (12) and (13)
of Fig. 78.
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If the radiation illuminates only a part of the surface at normal
incidence and the entire surface at oblique incidence (Oo = en), the
measured coefficients for angles of incidence 80 > en become

R, = cos (00 - em) . f, (n, k, e0 )

Rz = cos (eo - Om) . f? (n, k, 0o) (83)

4.Z. 3. Nonspecular Reflection*

Nonspecular reflection stems from an imperfect surface
which has a certain degree of roughness. Nature does not know a true
smooth surface. A material with a surface which reflects radiation in
all directions, apparently without preference for any particular
direction, is called a diffuse reflector.

All previous discussions were concerned with ideal or specular
reflection. The Fresnel equations are derived for a clean and smooth

material surface, but are still applicable if the surface has a certain
degree of roughness, that is if the wavelength X considered and the

radius of curviature p are not of the same order (% << P). This is true,

for instance, in the case of the reflection of radio waves on the surface
of the sea.

For the present discussion we assume that the surface has no
sophisticated irregularities (such as holes, caves, pits) and is nearly
free of sharp edges and peaks, which means that i'•i;raction and

multiple reflection do not occur. Such a rough surface can be con-
sidered to be formed by numerous small areas, each of which is a

plane surface element dA. The Fresnal equations can be applied to
each parti-ular surface element. Figure 79 illustrates a small part of

a plane section of a surface parallel to the plane of incidence of the

radiation. The surface, of which we considered only a small region of

the length of dL, is illuminated by a radiation source S. A receiver R

measures the intensity of the reflected radiation. If the receiver is far

enough away from the reflecting surface, the radiation forms a plane
wavefront. The inclination of the surface elements (all have parallel

normals) which contribute to the intensity measured by R can be
determined from the locations of S and R. In the example illustrated

by Fig. 79, the elements dA, and dA2 are parallel and, therefore,

' Other studies in this area are described in Refs. 21 and 22.
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their normals are parallel to that of point A. All the surface elements
E dAv together reflect only a small fraction of the incominig radiition
directed toward the receiver RZ, but this contributing area is identical

for the intensities R, and Rz. The rnughness of a surface can be
defined and scaled by this method. The effect of diffraction, if any,

could also be determined from such measurements. If we ineasure the
ratio Rz/R, for two angles of incidence we car. obtain the true index

of refraction in the same way as described previously.

If the reflected radiation is a mixture of specular multiple- -
reflection rays, this simple concept does not hold. Let us consider
an example published recently (Ref. 23). Figure 80 is based on
experimental dat,. obtained in this study. Two pairs of reflection
curves are given: (1) the curves R, and RZ, which are the rzýflectance
of a smooth metallic surface (Ni, immaculate, ground, and polished);
and (2) (RI) n and (312 ) n, which represent that portion of the stray
light travelling in the direction which follows the reflecti.,- law after
the material was roughed by coarse-grained corundum... T.hus for the
sec-ind pair of curves the degree of roughness ot the material was of
the same order as the wavelengths of the radiation source ( X - 2. 51).
The curves R?/R 1 and R2 /R1 n, given in Fig. 80, also show that purely

specular reflection does not occur at any angle of incidence.
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